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Quasi-Static Finite-Element Analysis of a Skewed
Microstrip Crossover

Krzysztof Nyka and Michał Mrozowski, Member, IEEE

Abstract—In this letter, we present a quasistatic analysis of a
microstrip crossover on dielectric substrate. The microstrips are
located at different planes and may cross at an arbitrary angle. Ca-
pacitances and inductances are calculated from scalar potentials.
For magnetostatic formulation, the boundary conditions for scalar
potential is introduced by means of partitioning surfaces. The use
of adaptive finite element method provides required flexibility with
respect to analyzed geometry, optimal discretization and good ef-
ficiency.

Index Terms—Adaptive finite-element, discontinuities, induc-
tance, quasistatic, scalar magnetic potential.

I. INTRODUCTION

M ICROSTRIPS crossing at right angle have been inves-
tigated using a static electric field analysis in [1] and

full-wave analysis in [2]. Most recently, a quasistatic electric
and magnetic analysis of a right angle microstrip crossover in
a multilayer microstrip coupler has been reported in [3]. The
capacitances and the inductances of the lumped element repre-
sentation of discontinuity were derived from a static finite-dif-
ference (FD) solution of Laplace equation for electric and mag-
netic potential. The formulation for the scalar magnetic poten-
tial was possible due to the structure’s symmetry which allowed
the potential to be fixed on symmetry planes serving as mag-
netic walls. Further simplification resulted form orthogonal ori-
entation of microstrips in the crossover which eliminated the
magnetic coupling reflected by zero mutual inductances in the
equivalent circuit.

In this letter, we concentrate on the more general case when
the microstrips cross at an arbitrary angle (see Fig. 2 for the ge-
ometry). The absence of symmetry in a skewed crossover makes
it impossible to introduce simple magnetic walls which serve
as boundary conditions for magnetic potential. To define the
boundary conditions for the scalar magnetic potential, we use
the concept of potential partitioning surface [4] introduced in
finite-difference magnetostatic analysis. The oblique directions
of conductors require more flexible method of discretization
than FD. Therefore, we propose a more flexible approach based
on the finite element (FE) discretization of Laplace equation.
The efficiency and accuracy of our solver is enhanced by adap-
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tive mesh refinement [5] and extrapolation techniques using es-
timated approximation error [6], [7].

II. M AGNETIC SCALAR POTENTIAL IN FINITE-ELEMENTS

The existence of magnetic scalar potentialin domain
such that

(1)

and satisfying the Laplace equation

(2)

relies on the following condition

(3)

for all closed contours . This condition may be fulfilled
by excluding the currents from and opening all contours that
surround the currents. This is realized by cutting the domain
with an infinitely thin slit [Fig. 1(a)] spanning the inner con-
ductors and the ground conductor at the outer boundary. Any
closed contour around the current crosses the boundary
of the domain which means that it does not entirely lay inside

(i.e., ) but is geometrically equivalent to a contour
between the opposite sides of the partitioning slit

. Thus, the integrals along both contours must give the same
result

(4)

The partitioning surfaces can be chosen arbitrarily because
there is no requirement concerning the absolute values of the
potential along and provided the jump across the
slit is held constant and equal to.

The partitioning surface should not however disturb the con-
tinuity of , which together with (1) and (4) yields a pair of
boundary conditions on

(5)

(6)

The remaining boundaries are all conducting surfaces,
on which the magnetic field is governed by the homogenous
Neumann condition

(7)
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(a) (b)

Fig. 1. Partitioning surfaceP introducing the magnetic scalar potential
jump� equivalent to the currentI—(a) the general illustration and (b) the
implementation on a finite elements mesh; 2D sections of 3D structures.

It should be noted that the partitioning surface incorporated
in the finite element method requires a physical cut into a mesh
introducing two boundaries [Fig. 1(b)]. In the finite-difference
approach [4], the potential partitioning surface was only a fic-
titious plane indicating the grid nodes where the differential
formulation of derivatives had to be modified according to the
boundary conditions.

The condition of the continuity of normal derivatives on(6)
has the same form as the Neumann conditions on(7). In the
finite-element discretization, they, together, are already built in
a weak formulation of the Laplace equation asnatural boundary
conditionsand, as such, need not to be applied explicitly.

The condition of constant potential step (5) is implemented
as anessential boundary conditionand its treatment is similar
to the periodic conditions with a shift. This yields a symmetric
linear equations system . More specifically, the condi-
tion (5) is used as , where and denote the
indices of the corresponding nodes at the opposite surfaces of

[black and white dots in Fig. 1(b)]. For adaptive mesh refine-
ment, the above condition is extended to the case when some
points do not match exactly nodes at the another side ofand
needs interpolation between the vertices of a matching boundary
triangle.

III. A NALYSIS OF THE CROSSOVER

The geometry of the crossover is shown in Fig. 2. The mi-
crostrip lays on the dielectric substrate of relative permit-
tivity , while the is buried therein. The microstrips may
have a nonzero thickness. In order to provide the same simu-
lation conditions for a wide range of anglesbetween the two
lines directions, the structure is bounded by a cylindrical clo-
sure.

In the static approach, the crossover is considered lumped re-
gardless of its physical size, thus, the equivalent circuit is similar
to that of a section of coupled transmission lines (Fig. 2). Ca-
pacitances and inductances are derived from separate electro-
and magnetostatic analysis, based on two schematics extracted
from the overall equivalent circuit (Fig. 3). The elements are
computed from the solution of the Laplace equation using the
energy formulations

(8)

where and are excitations given as boundary
conditions for electric and magnetic potentials. and are

Fig. 2. Geometry of the skewed crossover and its equivalent circuit.P and
P are the partitioning surfaces for magnetostatic analysis.

Fig. 3. Equivalent circuits in static electric (capacitances) and magnetic
(inductances) analysis.

the total electric and magnetic energy naturally available in the
finite elements.

Each circuit element is obtained from the energy for different
combination of excitations, as follows:

and

(9)

The boundary conditions imposed on a cylindrical housing
are different for electric and magnetic simulation. For the former
top and bottom covers are conductors of potential , but
side surface is the magnetic wall with the Neumann condition
in order to isolate the groundplane from the microstrips. In the
latter, all surfaces are electric walls with the Neumann condition
(7).

IV. NUMERICAL RESULTS

For the sake of comparison, we have analyzed the crossover
of physical properties taken from [3], where the orthogonal case
has been numerically simulated and experimentally verified in
a multilayer directional coupler. The substrate of has
two equal layers mm. The microstrips

and have thickness mm and widths
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TABLE I
NUMERICAL RESULTS FORDIFFERENTANGLES�

TABLE II
COMPARISON OFDEEMBEDDED ELEMENTS FOR� = 90

mm and mm, respectively. The cylindrical housing
has diameter mm and the top cover

mm above the substrate.
The equivalent circuit elements of the whole structure com-

puted for different are listed in Table I. The results for deem-
bedded elements of the right angle crossover ( ) are com-
pared with [3] in Table II. The cylindrical housing was replaced
by a box of the same height and side walls placed from the mi-
crostrips at a distance equal to their widths. The deembedding
moved the four ports of the crossover by and
toward the center along and , respectively.

The size of discretization mesh was between 1053 and 1273
nodes for the initial mesh and between 38 310 and 66 260 nodes

for the final mesh (after six steps of adaptive refinement). On the
fine mesh, the average approximated discretization error after
the correction with an estimated error was 0.3%.

V. CONCLUSION

We have shown that quasistatic analysis of capacitances and
inductances in microwave circuits can be efficiently carried out
in the framework of finite-elements using scalar potentials for
both electric and magnetic field calculations despite the lack
of the symmetries allowing the introduction of magnetic walls
which enable one to introduce impose boundary conditions on
scalar magnetic potential. The adaptive finite-element technique
was used to find equivalent circuit of a skewed microstrip cross-
over. The results for orthogonal case show consistency with pre-
viously reported ones.
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